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Neuron type classification in rat 
brain based on integrative 
convolutional and tree‑based 
recurrent neural networks
Tielin Zhang1*, Yi Zeng1,2,3*, Yue Zhang4, Xinhe Zhang1, Mengting Shi1,2, Likai Tang5, 
Duzhen Zhang1,2 & Bo Xu1,2,3 

The study of cellular complexity in the nervous system based on anatomy has shown more practical 
and objective advantages in morphology than other perspectives on molecular, physiological, and 
evolutionary aspects. However, morphology-based neuron type classification in the whole rat brain 
is challenging, given the significant number of neuron types, limited reconstructed neuron samples, 
and diverse data formats. Here, we report that different types of deep neural network modules may 
well process different kinds of features and that the integration of these submodules will show power 
on the representation and classification of neuron types. For SWC-format data, which are compressed 
but unstructured, we construct a tree-based recurrent neural network (Tree-RNN) module. For 
2D or 3D slice-format data, which are structured but with large volumes of pixels, we construct a 
convolutional neural network (CNN) module. We also generate a virtually simulated dataset with two 
classes, reconstruct a CASIA rat-neuron dataset with 2.6 million neurons without labels, and select 
the NeuroMorpho-rat dataset with 35,000 neurons containing hierarchical labels. In the twelve-class 
classification task, the proposed model achieves state-of-the-art performance compared with other 
models, e.g., the CNN, RNN, and support vector machine based on hand-designed features.

It has been more than 100 years since Santiago Ramón y Cajal first proposed the neuron doctrine by staining 
sparse cell populations in 1906. After that, more research came and joined the ranks, which have promoted this 
research area’s development. Currently, we have more elaborate and efficient equipment for a better understand-
ing of the neuron doctrine from different scales, disciplines, and perspectives.

Like Mendeleev in 1869, who developed the periodic table, many researchers have made efforts to conduct 
neuron type classification and multi granularity neural identity measurements from different brain regions1. 
Many improvements have been achieved in neural classification based on the molecules, electrophysiology 
transcriptome, genome, biophysics, and morphology, to understand biological structures and functions better 
systematically and reproducibly. However, there is currently no broadly accepted and generally agreed-upon 
approach for neuron type classification until now.

For a finer neuron categorization, one smart way is to incorporate the features from different perspectives as 
much as possible. For example, Zeng et al. took advantage of quantitative features (e.g., structural, functional, 
and molecular criteria) measured from the same tissue2,3. However, limited by experimental procedures or 
experimental equipment, for most cases, only one or two specific criteria can be obtained from them. From the 
transcriptomics perspective, 23,822 cells were categorized into 133 cell types with the single-cell RNA sequenc-
ing method in the primary visual cortex and the anterior lateral motor cortex4. From the molecular criteria 
perspective, the relationships between molecular cell types and the morphological, physiological, and behavioral 
correlations measured by spatially resolved transcriptomic methods have been well identified5. In addition, the 
developmental and evolutionary definition of a cell type based on the molecular basis is also conducted within 
and between different species6. From the genome’s perspective, the Ivy Glioblastoma Atlas is constructed based on 
different features of genomic alterations and gene expression patterns7. From the perspective of electrophysiology, 
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the Allen Cell Types Database has generated 170 individual biophysically detailed neuron models and identified 
the distinctiveness of the intrinsic properties between subsets of these cells in the cerebral cortex8.

The prevailing schemes of neuron-type nomenclature contain the morphology definition, anatomical defi-
nition, molecular definition, physiological definition, evolutionary definition6, and developmental definition 
(multiple species comparison or lineage tracing on a larger time scale an animal). Hence, neuron types could be 
glutamatergic neurons, GABAergic neurons, parvalbumin-expressing neurons, somatostatin-expressing neurons, 
or glial cells. The study of cellular complexity in the nervous system based on anatomy shows more practical and 
objective advantages in morphology than other perspectives, such as the molecular, physiological, and evolution-
ary aspects. New progress in neuron staining, slicing, and reconstruction methods in mouse and rat brains9–11 
have also contributed to neuronal morphology identification.

NeuroMorpho.org is one of the largest public neuronal morphology databases of digitally reconstructed 
neurons by species, brain regions, and cell types12 and currently contains 721 cell types, 112,244 neurons, and 
317 brain regions. Hippocampome.org is another morphology dataset with detailed axonal and dendritic pat-
terns for the mouse hippocampus, containing 122 neuron types categorized by integrating morphology and 
neurotransmitters, synaptic specificity, electrophysiology, and molecular biomarkers13. The 3D morphologies 
and somatic electrophysiological responses combine for 170 individual neuron identifications in the primary 
visual cortex8. Anatomical methods have also been well integrated with genomic methods for validating the 
neuronal cell types and their connections in multiple species in the BRAIN Initiative Cell Census Consortium14.

However, the exact class numbers of rat neurons from taxonomy are still unknown15. This dilemma possibly 
comes from two main reasons: one is that the definition of different types of neurons is still not clear; the other 
is that one specific neuron type usually contains many diverse subtypes4, making their identification difficult, 
especially for some inhibitory neurons.

Traditional methods depend mainly on specific hand-designed features (e.g., the size of the soma, the number 
of branches, the angle of bifurcation, the branch level, the branching order, the neuron length, the dendritic and 
axonal shapes, and branching patterns, and the spine density), which are labor-intensive and possibly failed for 
some neurons with very complex dendritic or axonal arbors. Hence, the neuron-type classification automatically 
is becoming more necessary and urgent for the further analysis of multiscale neural circuitry and the functional 
simulation of biological networks.

The morphologies of neurons are usually described in two types of neuronal formats: one type is the SWC-
format file; the other is the 2D- or 3D-image format, as shown in Fig. 1a. However, the SWC-format file is low 
dimensional and unstructured (e.g., compressed as the structure of the non-strict binary tree, and invariant with 
exchanging neighborhood structures under the same bifurcate; moreover, the node list length is closely connected 
with the sampling rate). The 3D-image format is structured but with too high information dimensions (e.g., fewer 
samples than the complexity of the morphology, similar local features, invariance to translation rotation, and 
large scale of diameters). This paper focuses on feature detection from different data formats and tries to find 
some practical solutions for neuron type classification by morphology.

Deep neural networks (DNNs) are powerful in both structured and unstructured information processing. 
They possess many different kinds of subtypes, for example, the feed-forward type convolutional neural net-
work (CNN) or the loop-based recurrent neural network (RNN). These different types of architectures make 
DNNs powerful for both spatial and temporal information processing. For example, DNNs have been success-
fully applied to spatial information abstraction tasks (e.g., ImageNet classification16–19), sequential information 
prediction tasks (e.g., video-to-text transformation20,21), long-term planning tasks (e.g., go games22 and Atari 
2600 games23), and so on. The development of neuroscience and machine learning has also contributed to the 
development of automatic neuron type classification and categorization1, including expert knowledge24, the 
Bayesian classifier25, Bayesian clustering15, K-means clustering26, affinity propagation clustering27, harmonic 
co-clustering with the L-measure28 and hierarchical clustering29.

In this paper, we obtain inspiration from the morphology of neurons, which are more similar to tree-type 
structures, and then construct an integrative DNN model that contains a Tree-RNN30 and ResNet CNN for a 
better neuron-type classification. We design a Tree-RNN for feature learning from the unstructured SWC-format 
file data and construct a ResNet CNN for feature detection from structured 2D neuron images. We combine these 
two models, i.e., integrating the high-level features (at the last full-connection layers for each model) together 
by concatenating two feature vectors together as a longer vector then classified it with a new three-layer neural 
network. The model is then verified on the virtually simulated dataset (with generated two-class neuron data, 
relatively simple), CASIA rat-brain dataset (with 2.6 million reconstructed neurons without labels), and standard 
NeuroMorpho-rat dataset (with 35,000 labeled neurons with two main classes and twelve subclasses downloaded 
from the NeuroMorpho website, relatively hard).

Results
Virtually simulated dataset.  Usually, it is hard to identify which reason has caused the lousy performance 
of classification when both the complexity of datasets and the complexity of methodologies are not measured. 
Here, we try to lock the dataset’s complexity first by generating some virtual simulated samples first and then 
testing them with the proposed classification methods. By making this effort, we can quickly filter out some 
designed but relatively weak classifiers.

Z-jump in the SWC-format file is a commonly occurred problem, especially for some samples without well 
tracing, where the values of z axes of some feature points jumped (Fig. 1b, left). Some post-processing methods 
such as smoothing or filtering can handle this type of problem at some scale. For example, a demo of auto-
matic repair of the Z-jump problem (as shown in Fig. 1b, right) is given with the “zcorr” function from Trees 
toolbox24. Then, point resampling is performed on the SWC-format files to obtain a better point distribution. 
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This process includes diameter alignment and morphology smoothing. Finally, we use the Trees toolbox24 for 
the virtual simulated sample generation. For example, the 2-class virtual simulated dataset is generated with 
different neuron properties. The 2D images, which can be considered the projection of raw 3D images, are also 
generated with different hyperparameters. In order to keep the training samples balanced, we also use this Trees 
toolbox to expand the dataset (including both SWC files and images) by generating similar samples (with little 
pruning and addition of samples in the target class, 90%) and carry out the transformation of images by rotating, 
zooming in or zooming out.

The virtually simulated dataset contains two basic types of neurons: the basket cell as shown in Fig. 1c and 
the pyramidal cell as shown in Fig. 1d. The source code is available at https://​github.​com/​thoma​saimo​ndy/ 
treestoolbox/tree/master/casia. The two types of neurons have 500 samples for each class, with both the SWC-
format and 2D-image-format data converted by the Trees toolbox.

NeuroMorpho‑rat dataset.  Several (approximately 20% by calculation) of the neuronal morphology files 
at NeuroMorpho.org present the Z-jump problem. The Trees toolbox has a “zcorr” function designed for SWC 
file repairment. Figure 2 shows neurons after being repaired and processed by the Houdini software based on 
different hyperparameters (e.g., “zcorr = 10”). The data contains two main classes (principle cell and interneuron 
cell) and 12 subclasses, including six types of principal cells (e.g., ganglion, granule, medium spiny, parachro-
maffin, Purkinje, and pyramidal cells) in Fig. 2a, three types of interneuron neurons (e.g., basket, GABAergic, 
and nitrergic) in Fig. 2b, two types of glial cells (e.g., microglia and astrocytes) in Fig. 2c and one type of sensory 
receptor cell in Fig. 2d. The number of selected rat samples (e.g., the rat neurons) with labels is 35,000.

CASIA rat‑neuron dataset.  Most of the state-of-the-art single-cell reconstruction algorithms10,11,31 use 
the tracing-based method for the identification of neuron structures. However, it is time-consuming and difficult 
to achieve a full-brain-size reconstruction atlas in this way. The raw slice data in the CASIA rat-neuron dataset 
are from the lab of Qingming Luo9. Here, we reconstruct neurons with classification methods, which classifies 
(or separates) all of the biological structures from the background. The activation spreading method is then used 

Figure 1.   (a) Comparisons of the two main formats of neuronal morphology. (b) Morphological repairment of 
a single neuron by the Trees toolbox with different hyperparameters of the “zcorr” method. (c) Virtual simulated 
basket-type neuron samples containing different branch orders generated with Trees toolbox. (d) Generated 
pyramidal-type neurons with Trees toolbox.

https://github.com/thomasaimondy/
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for the single-cell morphology identification (e.g., SWC-format file). This method is efficient and can obtain 2.6 
million neurons in a much shorter time, even though some connections with much longer distances are miss-
ing. The detailed introduction of biological tissue recognition, reconstruction, and segmentation will be further 
described in our next paper.

We use most of the well-preserved relatively local information (e.g., soma and the locally connected synapse 
located within 500 µm) as the essential information for neuron type classification. However, this dataset does 
not contain neuron labels. This paper uses it as the pretraining dataset before neuron classification of the labeled 
data (e.g., NeuroMorpho-rat dataset) in the CNN-based and RNN-based models.

The pretraining is commonly used in many DNN architectures. First, two DNN architectures with one ordi-
nary and one mirror network are designed. Then, the two networks are connected for the information encoding 
and decoding. As an input image X, for example, the network encoded it into a Y with smaller dimensions and 
then decoded it back into X (represented as X̂ ), where the loss of network is designed as the minimal square 

Figure 2.   The neuronal morphologies from SWC-format data after repairing with Trees toolbox. The Houdini 
software generates the 3D model of neurons. Here, we show three examples for each class of neurons in the 
NeuroMorpho-rat dataset. (a) The six types of principal cells: ganglion, granule, medium spiny, parachromaffin, 
Purkinje, and pyramidal cells. (b) The three types of interneuron cells: basket, GABAergic, and nitrergic cells. (c) 
The two types of glial cells: microglia and astrocyte cells. (d) The 1 type of sensory receptor cell.
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error of X and X̂ . We reconstruct both the CASIA rat-neuron dataset and the virtually simulated dataset, and 
the download link is https://​github.​com/​thoma​saimo​ndy/​neuro​morpho_​neuron_​type_​class​ifica​tion.

Figure 3 shows the reconstruction procedure of the neuronal morphology. Figure 3a shows the reconstructed 
structures include somas and synapses, presented in gray, where each blue point represents the center posi-
tion of soma, and the number nearby is the index of the soma. Both somas and synapses have a correspond-
ing 3D position (e.g., X, Y, Z positions) and 3D size (e.g., the soma’s radius in different directions). Figure 3b 
describes the reconstructed somas clustered based on the soma positions and their neighborhood pixels. Fig-
ure 3c shows the reconstruction and separation of each neuron in the area of the prefrontal cortex. The region 
size is 1300 × 1000 × 100 pixels and contains 100 neurons of different types. Some standard pyramidal cells and 
basket cells with morphological characteristics can be easily identified. Figure 3d shows some samples of the 
reconstructed CASIA rat neurons randomly selected from 2.6 million cells in a single rat brain. The morpholo-
gies of the neurons vary greatly, which shows the great challenge of their classification. Figure 3e shows the 
reconstructed whole rat brain, in which different colors represent different densities of the number of neurons.

Neuron type classification.  We tested the different classification models on three datasets: the virtually 
simulated dataset, NeuroMorpho-rat dataset, and CASIA rat-neuron dataset. Each sample in each dataset con-
tains both three 2D images and a matched SWC-format file. The hand-designed features have also been calcu-
lated for these samples. There is a total of 31,501 raw images and 34,296 SWC-format files with labels. The sample 
ratio of training, validation, and test samples is 8:1:1. For the better training of DNNs, we expanded only the 
training samples, including 37,510 images (by translation, rotation, and scaling) and 40,196 SWC-format files 
(by adding or deleting some branches with Trees toolbox) in the 2-class task; and also 98,700 images and 99,996 
SWC-format files in the 12-class task.

We tested the CNN model on 2D image samples and tested the Tree-RNN and standard RNN on the SWC-
format dataset. The features in the hidden layers of the CNN and RNN are considered stable features from dif-
ferent data sources, and they are then integrated (by connecting two feature vectors) for the classification of the 
DNN model. The hand-designed features are classified with the support vector machine (SVM) model, which 
serves as the comparison experiment. The loss of SVM is L2-norm, and the stop-learning error is 1e-3.

For the virtually simulated dataset, basket and pyramidal cells are selected out with obvious morphology 
differences as the two classes of simple samples. The proposed models show 100% test classification accuracy on 
the virtually simulated dataset with two classes, including the proposed CNN, RNN, and standard SVM models.

For the NeuroMorpho-rat dataset, during the learning procedure in the DNN for the 12-class neuron type 
classification, the test accuracy is calculated as in Fig. 4a. The x-axis is the number of iterations. Here, we set this 
number to 100 for simplicity. The model in this figure integrates both the CNN and RNN features well for better 
classification performance. As the training time goes by, the test accuracy increases quickly, and the curve finally 
stops at approximately 90% accuracy.

The loss cost is another indicator of the learning procedure of the DNN model. As shown in Fig. 4b, the loss 
curve will decrease as the number of learning iterations increases, and at approximately 40 iterations, it obtains 
the smallest test loss; however, this is not the global minimal tuning point, and the test accuracy is still low. Hence, 
the network will continue training until it stops at the maximum number of iterations (100) with the dropout 
principle for anti-overfitting. All of the algorithms are run in a standard desktop computer with 4 GPUs (Tesla 
K40). The computation time for SVM is around 10 min; for RNN is around 2–6 h; for CNN is around 6 h; for 
Tree-RNN, it is around 24 h.

Figure 4c shows the IDs and the selected 12-type neuron names in the NeuroMorpho-rat dataset. As shown 
in Fig. 4d, in a two-class classification task, in which the two neuron types are principle cells and intern cells, 
for the single classification module, the RNN-based method obtains the best performances (90.24% accuracy 
for the Tree-RNN, and 86.11% and 86.63% accuracies for the standard RNN on raw SWC and fixed SWC data, 
respectively). Compared with them, the CNN methods obtain accuracies of approximately 84.04% to 87.87% 
based on the different qualities of the preprocessed image datasets (e.g., the raw SWC file, the resampled SWC 
files, and the XY-aligned SWC files). The SVM method for the classification of the hand-designed features 
achieves the lowest accuracy (84.78%). Then, we integrate the feature vectors of the CNN and RNN and obtain 
a 90.57% accuracy (with the “Multi” label in the figure).

There are six types of principal cells in the twelve-class classification task, three types of interneuron neurons, 
2 types of glial cells, and 1 type of sensory receptor cell. Here, we can obtain a similar conclusion as for the two 
classes. For the single classification module, the best performance is that of the Tree-RNN on the SWC-format 
files, with a 90.33% accuracy; the CNN-based methods are approximately 83.24% to 86% accurate, and the SVM 
method is 81.64% accurate. Compared with these results, the proposed integrative method reaches a 91.90% 
accuracy, which is the highest and state-of-the-art performance on the NeuroMorpho-rat dataset.

Figure 4e shows the classification matrix for the CNN model on the 12-class neuron images. Each value in 
the matrix represents the number of target-classified labels ( N ) after the conversion of log10N . The results show 
that some of the neuron types are more highly correlated; for example, the neuron morphology in class “1” is 
closer to that in classes “4”, “6”, “9” and “11”, and class “4” is highly connected to class “6”. Hence, misclassifica-
tion usually occurs in these specific neuron types. This result shows that the different classes of neurons may 
share similar features, which shows the characteristics of the data’s inner class and provides inspiration for better 
neuron-type assignments.

t‑SNE analysis on DNN‑based features.  DNN features for most of the neurons have hundreds of 
dimensions, for example, 512 for CNN and 128 for Tree-RNN, even the hand-designed features have 19 dimen-
sions, which is much higher than that of the human beings might well perceive and understand. Here, we select 

https://github.com/thomasaimondy/neuromorpho_neuron_type_classification
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Figure 3.   The self-reconstructed 2.6 million rat cells without labels. (a) Neuron branch detection and 
reconstruction. (b) Neuron soma identification and surface detection. (c) Different types of neurons were 
reconstructed from the neocortex; different colors represent different types of neurons. (d) The reconstructed 
CASIA rat-neuron dataset with approximately 2.6 million cells from a single rat brain. (e) The density of 
neurons in the whole rat brain.
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t-SNE32 for the in-depth analysis of the distributions of high-dimensional features. The t-SNE can decrease the 
dimensions of the features to two or three dimensions, by which humans might easily obtain a better under-
standing.

Figure 4f shows the t-SNE analysis resulted from the 2-class DNN-based features from both the 2D-images 
and SWC-format files from the NeuroMorpho-rat dataset. There are two classes: “0” is for the principal cell, 
and “1” is for the interneuron cell. The initial data vector before t-SNE is 640 dimensions (with the integration 
of 512 from the CNN and 128 from the RNN). In this figure, the different cell types are separate, and only a few 
interneurons are miscategorized as principal cells. This result shows that CNN is powerful in feature detection. 
Figure 4g shows the t-SNE distribution of 35,000 rat neurons in 12 classes. Different classes of neurons can be 
categorized into different groups of samples. This means that the categorization of neuron types fits the charac-
teristics of features learned from both the CNN and RNN.

Figure 4.   (a) The test accuracy with the number of iterations in the learning procedure of DNN-based neuron 
classification. (b) The loss curves in the test procedure of the DNN-based model. (c) The IDs and names 
of 12 subclasses of neuron types. (d) The performance of DNN-based models and other compared models 
on different types of datasets. (e) The confusion matrix, which shows the error classification in the 12-class 
identification. (f) The t-SNE distribution for the 2-class DNN-based features. (g) The t-SNE distribution for the 
12-class DNN-based features.
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Analysis of hand‑designed features.  It is a long history for the hand-designed neuronal features that 
might contribute to the neuron-type classification to some scale. However, even the neurons in the same class 
are largely diverse, making it a hard problem for identifying neuron types given some limited features. Table 1 
shows a collection of hand-designed neuronal features defined by the previous studies, including 19 features 
from morphology. For example, it contains “TotalLength” that indicates the summation of the length of all parts 
of neuronal structures (e.g., length of soma, dendrites, and axons), “MaxBranchOrder” introduces the maximum 
number of branch orders from the soma to terminals (axons or dendrites), and “SomaSurface” shows the total 
surface area of the soma.

SVM is one of the most commonly used pattern-recognition algorithms. Here, we select it as the baseline 
classifier to further analyze these hand-designed features in Table 1. Not all of the features contribute to iden-
tifying the selected 12 neuron types with the SVM classifier. This phenomenon is not surprised for the limited 
numbers of features and neuron types.

Further analysis is given in Fig. 5a, where contributions of different hand-designed features for the neuron-
type classification are tested. From the figure, with the SVM classifier, we find that some features positively 
contribute to the classification performance, for example, the average diameter and overall width. In contrast, 
some others harm the accuracy, for example, the number of branches, the total surface, and the max branch 
order. This result indicates that some definitions of neuronal features by humans might be ineffective for these 
12-type neurons. Additionally, the distributions of features in Fig. 5, to some extent, show the importance of 
different features.

Figure 5d shows the total-length feature, in which the minimum length in it is tens of micrometers, and 
the maximum length is 36,000 µm. The y-axis is the count of the neurons at different length scales. The curve’s 
distribution is the power-law distribution, which shows that more of the neurons have local-type connections 
instead of long-term-type connections.

Figure 5e shows the max path distance feature, and the range of the size is from 0 to 10,000. Most neurons are 
in two ranges: from 0 to 100 µm and from 200 to 300 µm. The count number of the max path distance exhibits 
linear attenuation with the distance.

Figure 5f shows the number of branches feature, in which the count number of neurons dramatically decreases 
with the increase of the number of branches. The total number of branches ranges from 0 to 1,700, which means 
that the maximum number of branches in a neuron can reach 1,700, i.e., a large number for most traditional 
neurons. However, most neurons stay in a range of branch orders from 0 to 300, following a power-law-like 
distribution.

Figure 5g shows the max branch order, which is another positive hand-designed feature for neuron type 
classification. However, Fig. 5h shows a negative feature, i.e., the soma surface, ranging from 0 to 10,000. The 
soma surface contributes little to the neuron classification instead of well accepted as an important neuron 
type feature. It also follows a normal-like distribution, very different from the power-law distribution of other 
features. Further analysis of what kind of feature distribution will contribute to the classification is a next-step 
candidate key research point.

t‑SNE analysis of hand‑designed features.  Figures 5b and c show the t-SNE analysis results for the 
hand-designed features with a 19-dimensional vector on two classes and 12 classes, respectively. The hand-
designed features are mostly from anatomical experiments or the simple statistics of neuron characteristics, 
which may not be the best indicator for neuron types. The comparisons between DNN-based features (Figs. 4f 
and g) and hand-designed features (Figs. 5b and c) show that the DNN-based features have better clustering 
performance. Hence, they will be better for the neuron type indicator in neuron type classification and catego-
rization.

Table 1.   The hand-designed features related to the neuron morphology after determining the mathematical 
statistics.

Morphology Feature Statistic Feature Label

TotalLength FractalDimension NeuronName

TotalSurface AverageDiameter SpeciesName

TotalVolume AverageContraction PrimaryBrainRegion

TotalFragmentation MaxBranchOrder SecondaryBrainRegion

OverallDepth MaxPathDistance TertiaryBrainRegion

OverallHeight MaxEuclideanDistance PrimaryCellClass

OverallWidth SomaSurface SecondaryCellClass

NumberBifurcations PartitionAsymmetry TertiaryCellClass

NumberStems AverageBifurcationAngleRemote SpeciesAge

NumberBranches AverageBifurcationAngleLocal DevelopmentType
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Figure 5.   (a) Accuracy improvements of various hand-designed features. (b) The t-SNE distribution for the 
2-class hand-designed features. (c) The t-SNE distribution for the 12-class hand-designed features. (d, e, f, 
g) Some positive hand-designed features for neuron type classification, including the total length, max path 
distance, number of branches, and max branch order. (h) Negative hand-designed features.
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Discussion
Designing the proper morphological features for neuron categorization and classifying them are the two main 
challenges. Some traditional methods use hand-designed features and shallow network models for the neuron 
type classification. However, the morphologies of neurons are complicated and are usually described as raw 3D 
images with billions of voxels or SWC-format files with unstructured data lengths. These data characteristics 
cause the traditional machine learning methods to fail. Different types of DNN-based efforts have solved these 
problems to some scale, especially in brain-tissue segmentation33, tracing34, and classification35.

This paper, similar but different from other DNN-based algorithms, proposed an integrative deep learning 
model for better neuron-feature generation and neuron-type classification. The model contains a CNN module 
for feature detection in structured 2D images via the axes’ projection from 3D raw images. We also self-designed 
a proper tree-based RNN for unstructured feature learning from SWC-format files.

Compared with the traditional hand-designed neuron features (e.g., the size of the soma and the number 
of branches), the DNN-based features have a more extended dimensional representation. For example, they 
contain a 512-dimensional CNN feature vector and a 128-dimensional Tree-RNN feature vector. Moreover, the 
DNN-based feature has better clustering characteristics in the t-SNE distribution. These neuron morphology 
representations may contribute to a finer neuron categorization and classification for the whole rat brain. The 
CNN model is pre-trained on the CASIA-rat dataset and then integrates with Tree-RNN to retrain and test virtual 
simulated and NeuroMorpho-rat datasets. The integrated model achieves the best performance compared with 
traditional SVM, CNN, and RNN models on the standard NeuroMorpho-rat dataset.

The structural and functional identifications of different neural types and related network topologies are 
important for the next-step research on biology-inspired artificial intelligence. Yin et al. have analyzed degree 
centrality, closeness centrality, and betweenness centrality of conventional and clustered networks to better 
understand the biological efforts to optimize the network information transfer36. Hence, deeper integration of 
these multi-scale biologically-plausible inspirations with artificial or spiking neural networks is necessary towards 
brain-inspired artificial intelligence.

Methods
The overall processing procedure is shown in Fig. 6a, which is designed to answer the following three basic ques-
tions related to neuron classification and categorization:

Which are the most proper models for different neural data formats? The neuron morphology community 
usually uses tree-like SWC-format data and raw 3D pixel data for the morphology description. However, SWC-
format data have variable lengths related to the complexity of structures, and 3D data may contain millions of 
pixels, which is a big data problem for the next-step classification. Based on these two challenges, we select the 
RNN and Tree-RNN to classify variable-length SWC-format data and select the ResNet CNN to classify 2D 
images (converted from 3D raw images by the projection of the X, Y, and Z axes), as shown in the models for 
learning features in Fig. 6a.

What level of granularity of a cell type definition is necessary? Different scales of neuron classification are con-
sidered in the classification in Fig. 6a. For the large scale, two neuron types are classified, including principle cells 
and intern cells. For the small scale, 12 sub-neuron types are classified, including six types of principal cells (e.g., 
ganglion, granule, medium spiny, parachromaffin, Purkinje, and pyramidal cells), three types of interneurons 
(e.g., basket, GABAergic, and nitrergic cells), two types of glial cells (e.g., microglia and astrocyte cells) and 1 
type of sensory receptor cell.

What are the fundamental features guiding the categorization of various cell types? Usually, people use hand-
designed features after a careful selection, for example, the size of the soma, the number of branches, the angle of 
bifurcation, the branch level, the branching order, the neuron length, the dendritic shapes, or the spine density. 
However, these features are too simple compared with the far more complex neuron types. The DNN-based fea-
ture learned from both SWC-format and image-format data may give us more hints about the proper definition 
of features, as shown in the categorization in Fig. 6a.

ResNet CNN for the 2D‑morphology image classification.  As shown in Fig. 6b (a more detailed 
version is shown in Appendix Fig. 1), for the classification of neuron images, we construct a ResNet (residual 
neural network)37. The residual blocks in the ResNet (i.e., the dotted box in Fig. 6d) are carefully designed for the 
vanishing gradient problem. Compared with traditional DNNs, the ResNet protects the integrity of information 
and avoids gradient disappearance and gradient explosion, which makes it more powerful for 2D image clas-
sification. In addition, taking the complicated structural features of neuron morphology into consideration, we 
set the layer number of the ResNet to 18 and the learning rate to 10−5 for previous layers and 10−4 for the last 
fully connected layers. The remaining computational units are similar to those of the traditional CNN, and the 
detailed parameters of the CNN can be found in Table 2.

Tree‑RNN for unstructured SWC‑format data classification.  SWC-format files (i.e., the initials of 
the last names of E.W. Stockley, H.V. Wheal, and H.M. Cole38) present the tree structure and describe the order 
of root nodes or branch nodes of neurons. They are non-structured and difficult to analyze further by traditional 
machine learning methods. In addition, the data in an SWC-format file also usually contain significant morpho-
logical errors, e.g., false mergers and false splits, which make the neuron type classification difficult.

Long short-term memory (LSTM)39 networks have gate mechanisms and are more powerful for variable 
spatial or temporal information processing. Here, we select both LSTM and traditional RNN units as the basic 
RNN module for morphology’s unstructured feature learning. As shown in Fig. 6e, we use standard 2-layer 
LSTM39 and RNN modules (and LSTM) to classify unstructured SWC-format data.



11

Vol.:(0123456789)

Scientific Reports |         (2021) 11:7291  | https://doi.org/10.1038/s41598-021-86780-4

www.nature.com/scientificreports/

Figure 6.   The proposed integrated DNN architecture contains a ResNet CNN for 2D-image feature detection 
and Tree-RNN for SWC-format feature detection. (a) Diagram of the processing procedure, including the data 
preparation, feature learning, neuron classification, and categorization. (b) The structure of ResNet18 for image 
classification. The input is three-channel images from the projections of the X, Y, and Z axes. Before the residual 
blocks, data are first processed by convolution, batch normalization (BN), ReLU activation, and MaxPooling. 
The following four layers have different residual block hyperparameters, as shown in Table 2. The output is the 
generated features after completing average-pooling and full-connection. (c) The proposed Tree-RNN, including 
the standard structures of the RNN and LSTM modules. There are five 2-layer LSTM blocks in this tree, and 
black arrows represent the connections between them. Every block has the same structure, which contains two 
hidden layers, each with 128 neurons. Finally, the result is output through a fully connected layer. The dotted 
boxes show the basic operating units of the RNN and LSTM. (d) The submodule of the ResNet layer. (e) The 
submodule of the Tree-RNN, which can also be considered the traditional simple 2-layer RNN.
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To achieve a better classification, we design a convolutional layer for data dimension reduction and then 
integrate it into the recurrent module with the full connection. The number of hidden units of the RNN and 
LSTM is 128 for both of them. The output layer has 2 or 12 classes according to the experiments.

Furthermore, the neuron morphology in an SWC-format file describes the tree-type architectures of the 
neuron structures; hence, the “tree-like structure” will be valuable in the data organization of the SWC-format 
file. We then hand-design the “tree-structure-based RNN” (Tree-RNN), as shown in Fig. 6c, which connects dif-
ferent RNN modules by a basic tree structure. Each RNN module has a 2-layer LSTM (or RNN) and consists of 
two hidden layers (each with 128 neurons). The features in the Tree-RNN before the final fully-connected layers 
can also be combined with feature vectors in the CNN for integrative feature representation and classification 
(e.g., the “Multi” model). Detailed parameters of the RNN and Tree-RNN are given in Table 2. In addition, we 
also give further performance comparisons between different DNN models, as shown in Table 3, where accuracy 
and the area under the curve are tested30,40–42.

The hand‑designed features.  The hand-designed features include both the features related to morphol-
ogy (e.g., the length, surface size, width, depth, or the number of branches) and the features obtained after 
completing the mathematical calculations (e.g., the fractal dimension, the calculated surface area of the soma, 
and average bifurcation angles at remote or local scales), as shown in Table 1. The samples’ labels cover differ-
ent scales, from neuron types and brain regions to species and developmental characteristics. These features 
will be used for the feature-based SVM classification and the comparison analysis with DNN-based features in 
categorization.

Trees toolbox for preprocessing SWC‑format files.  We use the Trees toolbox for neuron morphology 
generation, conversion, feature calculation, and the repair of SWC-format files24.

As shown in Eq. (1), δz is the difference between the pre- and post-nodes at the Z-axis of an SWC-format file. 
Zth is the predefined hyperparameter (e.g., shown in Fig. 1b). Here, we set zmin to zero.

t‑SNE configuration for feature analysis.  The t-SNE (t-distributed stochastic neighbor embedding) is 
a nonlinear dimension-reduction algorithm for mining high-dimensional data32. Compared with the traditional 
linear dimension-reduction algorithm, i.e., PCA, which cannot explain complex polynomial relations between 
features and performs poorly when they focus on different data points in lower-dimensional regions, t-SNE 
preserves both the local and global structure of the data and is a very suitable dimension-reduction algorithm 
for the process of feature clustering.

(1)δz = zmin if (δz > Zth)

Table 2.   The hyperparameters for the CNN, RNN, and Tree-RNN.

CNN RNN Tree-RNN

lr-fc = 1e-4 lr = 1e-4 lr = 1e-4

lr-conv = 1e-5 n-hidden = 128 n-hidden = 128

Epochs = 20 Epochs = 100 Epochs = 100

Batch-size = 300 Batch-size = 400 Batch-size = 500

Optimizer = Adam Maxlen-of-tree = 1500 Maxlen-of-tree = 1500

Loss = CrossEntropyLoss OverallHeight in-dim = 7

Table 3.   The performance of neuron-type classification with different DNN architectures, including accuracy 
and the area under the curve (AUC).

Name Architectures Accuracy (%) AUC​

CNN40 ResNet 87.87 0.824

RNN42 2layer-LS™ 89.00 0.882

Tree-RNN30 Tree-2layer-LS™ 90.33 0.894

U-net (with a full-connection layer for classification)41 Unet 86.39 0.781

Ours (Combination last layer, lr=1e-3) ResNet+TreeRNN 89.36 0.907

Ours (Combination last layer, lr=1e-4) ResNet+TreeRNN 91.90 0.932

Ours (Combination last layer, lr=1e-5) ResNet+TreeRNN 91.13 0.928

Ours (Combination hidden layer, lr=1e-3) ResNet+TreeRNN 88.52 0.892

Ours (Combination hidden layer, lr=1e-4) ResNet+TreeRNN 90.77 0.916

Ours (Combination hidden layer, lr=1e-5) ResNet+TreeRNN 90.69 0.909
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For the DNN-based features, we use two feature points x640di  and x640dj  (both of which have 640 dimensions) 
in the high-dimensional space and calculate the Gaussian distribution centered on x640di  by pij =

pj/i+pi/j
2n  . σi 

represents the variance and n is the number of candidate points.
When mapping the data to low-dimensional space, we select the 2D space. We still need to reflect the simi-

larity between high-dimensional and low-dimensional data points in the form of conditional probability qij.

We use the conditional probability distribution Pi (in the low-dimensional space) and Qi (high-dimensional 
space) with the conditional probability between every two points to measure the similarity (Kullback–Leibler 
divergence) between these two distributions (as shown in Eq. (4)).

The gradient is calculated by:

Then, the stochastic gradient descent algorithm is trained, and the best 2D clustering samples are obtained, 
which could be considered the best 2D information representation for the original 640D distribution.

Data availability
The source code, three types of datasets (for the raw data of neuromorpho-rat, please downloading it directly 
from neuromorpho.org), and the trained DNN-based models are available https://​github.​com/​thoma​saimo​ndy/​
neuro​morpho_​neuron_​type_​class​ifica​tion.
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